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We consider two models of branched polymers (lattice trees) on the 
d-dimensional hypercubic lattice: (i)the nearest-neighbor model in sufficiently 
high dimensions, and (ii) a "spread-out" or long-range model for d >  8, in which 
trees are constructed from bonds of length less than or equal to a large 
parameter L. We prove that for either model the critical exponent 0 for the 
number of branched polymers exists and equals 5/2, and that the critical 
exponent v for the radius of gyration exists and equals 1/4. This improves our 
earlier results for the corresponding generating functions. The proof uses the 
lace expansion, together with an analysis involving fractional derivatives which 
has been applied previously to the self-avoiding walk in a similar context. 

KEY WORDS:  Branched polymers; lattice trees; lattice animals; lace 
expansion; critical exponents. 

1. THE MODELS A N D  RESULTS 

Recently (1~ we used the lace expansion to prove that the lattice tree and 
lattice animal critical exponents for the susceptibility and correlation length 
of order two exist and take their mean-field values 7 = 1/2 and v = 1/4 in 
two situations: (i) for the usual nearest-neighbor bond models on the 
hypercubic lattice Z d if the dimension d is sufficiently high, and (ii)for 
"spread-out" or long-range models (defined below) if d > 8 .  We now 
consider the more detailed question of the existence of the critical 
exponents for the number of n-bond trees and the radius of gyration. 
Mathematically this question asks for the large-n asymptotics of a 
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sequence, given the behavior of its generating function near the closest 
singularity to the origin. 

To simplify the discussion, we restrict attention to lattice trees, 
although we expect that a similar analysis can be carried out for lattice 
animals in the above two situations. Our results are that for the above two 
models the exponent 0 for the number of n-bond trees exists and equals 
5/2, and the exponent v for the radius of gyration exists and equals 1/4. The 
method of proof uses the lace expansion of refs. 1 and 2, together with the 
"fractional derivative" analysis used in ref. 3 to study the analogous 
problem for the self-avoiding walk. However, a new technical difficulty 
arises in the application of these ideas to branched polymers, due to a 
delicate cancellation in our expression for the amplitude in the asymptotic 
formula for the number of n-bond trees. 

The basic definitions are as follows. A nearest-neighbor bond in Z d is 
an unordered pair of sites in Z a separated by unit Euclidean distance. A 
nearest-neighbor tree is a connected bond cluster with no closed loops, 
constructed from nearest-neighbor bonds. Spread-out trees are connected 
bond clusters with no closed loops, constructed from bonds given by pairs 
of distinct sites x, y ~ Z a with Ilx - yll co ~< L, where L is a parameter which 
will be taken to be large depending on the dimension. Although trees are 
defined to be sets of bonds, we will say that a tree T contains a site x if 
x is an endpoint of a bond in T. For  x e Z a, we denote by tn(x) the number 
of trees consisting of n bonds [and hence ( n +  1) sites] which contain 
both x and the origin. For n = 0 we set t o (x )=  6o.x- Let tn = ~ x  tn (x )= 
(n + 1). # {n-bond trees containing the origin}, and let an = t , / (n  + 1) 2 be 
the number of n-bond trees modulo translation. It is known (41 from a 
subadditivity argument that the limit 

2 = lim a~/~ = sup a~/n (1.1) 
n ~ o o  n > ~ l  

exists and is nonzero and finite, and it is widely believed (5) that in all 
dimensions there are constants A, 0 such that 

a. ~ A;~nn -~  (1.2) 

(with a logarithmic correction for d =  8). Here the symbol ~ means that 
the ratio of the left and right sides approaches unity as n goes to infinity. 
The best general rigorous bounds are 2"n-~176176 ~< an ~< 2n; the upper 
bound is given by (1.1) and the lower bound is obtained in [ref. 6]. The 
critical exponent 0 is believed to depend only on the dimension, and in 
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particular to be the same for both the nearest-neighbor and spread-out 
models, for any L >/1. The mean radius of gyration R,  is given by 

R2= 7-1 ~ ~ [ x - e r l  2 (1.3) 2t, ixlZt"(x)=,,r~o:lrl . . . . .  r 

where l xl denotes the Euclidean length of x, 2 r  = (n + 1)- 1 Z~ ~ r X is the 
center of mass of T, and IT] denotes the number of bonds in T. The radius 
of gyration is believed to satisfy 

R , ~  Dn ~ (1.4) 

for some D and v, with v depending only on the dimension (again with a 
logarithmic correction for d=8) .  See [ref. 7] for a recent Monte Carlo 
analysis of v, including dimensions d = 8, 9. 

The main result of this paper is the following theorem. 

T h e o r e m  1.1. For the nearest-neighbor model in sufficiently high 
dimensions, or for the spread-out model with d >  8 and L > Lo for some 
sufficiently large L o = Lo(d), there are positive A, D such that: 

(a) a,=A2"n-S/2[l+O(n ~)] for a n y e < m i n { 1 / 2 , ( d - 8 ) / 4 } .  

(b) R,=DnJ/4[1 + O(n-~)] for any e<min{1/2,  (d -8) /4} .  

The point of departure of the proof is the results obtained in ref. 1 for 
the corresponding generating functions. These generating functions are 
defined in terms of the two-point function, which is given by 

Gz(x) = i t,(x) z ~ (1.5) 
n = 0  

The susceptibility is then defined by 

Z(Z)= Z Gz(X)= i t,z" (1.61 
x e Z  d n=O 

and the correlation length of order two is defined by 

7 1 71/2 V "g~ ~ '  ( . - ~ l ~ R 2 z n q U  2 
2 12 a. .  a-r~o, lrl=. , " - -  , , | (1.7) 

r J. G~(x)j =L Z.E,~o.,~,=.(n+l)z" d 

Let z~ = 2-~. It was proved in ref. 1 that for the nearest-neighbor model 
above some dimension do, and for the spread-out model with d >  8 and L 
sufficiently large, 

Z(z) ~ (z~ - z) -1/2 (1.8) 
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and 

~ 2 ( Z ) , ~ ( Z c _ _ Z  ) 1/4 (1.9) 

where f ( z ) ~  g(z) means that there are positive constants cl, c2 such that 
Cl g(z) <<.f(z) <~ c2 g(z) uniformly in positive z < zc. [In this paper (1.8) and 
(1.9) are improved to asymptotic formulas, with bounds on the errors.] 

To prove Theorem 1.1(a), we begin by writing 

B 
Z(Z) -- (Z e __ Z)1/2 ~ ~(Z)  (1.10) 

The lace expansion was used in ref. 1 to obtain a formula for Z(z), in terms 
of which B and g(z) can be identified. We do this in the next section, using 
the notation and ideas of ref. 1. We then apply Lemma 3.3 of ref. 3, which 
states in particular the following. 

k e m m a  1.2. Let f (Z)=Zn~oCnZ n have radius of convergence 
greater than or equal to R > 0 .  If for some b~> 1 the bound [f '(z)[ ~< 
c o n s t - [ R - z l  -b holds uniformly in [zl <R ,  then Icnl <~O(R nn-=) for 
any cr 2 - b .  

The coefficient of z n in the series expansion of ( zc - z )  -I/2 is 
asymptotic to a multiple of 2nn -m ,  with a correction of order ~cnn -3/2. If 
it could be shown that for e < min{1/2, ( d - 8 ) / 4 }  

I~'(z)l ~ c o n s t .  I z c - z l  ~ 3/2 (1.11) 

uniformly in Izl <z~, then by Lemma 1.2 it would follow that the 
coefficient of z n in E(z) is O(z~"n -~) for every ~ < e + 1/2, and hence by 
(1.10) that t ,=A2n[n m +  O(n-~)] ,  which gives Theorem 1.1(a). Thus, 
Theorem 1.1 (a) follows from (1.11 ). In the next section we reduce the proof 
of (1.11) to some basic estimates. 

The amplitude A can be calculated easily in terms of B. Also, integra- 
tion of (1.11) gives the bound 

I~(z)l ~< const- [z~ - z[ ~ -  1/2 (1.12) 

for the error term in (1.10). 

2. R E D U C T I O N  OF T H E  P R O O F  TO S O M E  BASIC E S T I M A T E S  

In this section we prove Theorem 1.1, given the bounds of Lemma 2.1 
below. To state the lemma, we first need to recall some definitions and 
notation from refs. 1 and 3. 
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Our starting point is the following formula for the susceptibility, which 
is given in (3.8) of ref. 1: 

z(z)  = hz(O), Pz(O) - 1 - ~ z ~ ( O )  (2.1) 
F~(O) 

Here (2 is the coordination number, given by t'2 = 2 d  for the nearest- 
neighbor model and f2=  ( 2 L +  1) d -  1 for the spread-out model. The 
function/~z(k) is given by 

try(k) = g~ +/I~(k)  (2.2) 

where 

g~= y, z tTt (2.3) 
T ~ 0  

a n d / I , ( k )  is defined in Section 2.1.1 of ref. 1. It is shown in ref. i that for 
the spread-out model with d >  8 and L sufficiently large, 

gz ~< 4 and 1)z(k) <~ O(L I d) (2.4) 

uniformly in Izl ~ Zc. It is also shown that zc <~ O(L-a). Similar bounds can 
be obtained for the nearest-neighbor model in sufficiently high dimensions. 
However, to simplify the exposition, we restrict attention in the remainder 
of this paper to the spread-out model; analogous considerations hold for 
the nearest-neighbor model. 

We also use the following definition of "fractional derivatives." Given 
Z oo a power series f (  ) = Z n = o  cn zn and e > 0 ,  we define 

6~f(z )= ~ n~c,z n (2.5) 
n = l  

We define a norm on power series by setting 

IIf(z)lf = ~ Ic.I Iz~l 
n = 0  

This norm satisfies IIf(z) g(z)H ~ IIf(z)lt ][g(z)N. Suppose that the radius of 
convergence R o f f ( z )  is finite and nonzero. For e~(0,  1) it is proved in 
Lemma 3.2 of ref. 3 that for Izl ~< R 

I f ( z ) - f ( R ) l  ~ 21 ql6~f(R)ll l1 - z/R[ ~ (2.6) 

The following lemma will be proved in Section 3. 
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L e m m a  2.1. For a n y d > 8  there is an Lo such that for L /> Lo the 
following hold. 

(i) [P~(0)] ~< K [1 - z/zc[ 1/2 for all [z[ ~< zc, with K independent of L. 

(ii) []6~[Z/~z(0)] ]~]1 ~ < K D - 1 ,  for any 7 < 1/2, with K independent of 
L (but dependent on 7). 

(iii) For any z with ]z[ ~<z~ and for any e<min{1/2 ,  ( d - 8 ) / 4 } ,  

d 
-ds (z l l~(k))  -- [ zDz( z )  + 1] ~ ( k )  (2.7) 

where 
= b 

with l i m L ~  b = 0 ,  ]//(z)] <~K1 I i -Z /Zc[  ~ with K1 independent of L (but 
dependent on e), and l imr~ ~ ~z(0)=  0. 

(iv) For any e < m i n { 1 / Z , ( d - 8 ) / 4 } ,  ]16;V~lTzr 2, with K 
independent of L (but dependent on e). 

(v) For any z with Izl <~Zc and for any e<min{1/2 ,  ( d - 8 ) / 4 } ,  

d V~fiz(O) <~KL2+ a I1-z/zcl  ~ - 1  

Zz 

with K independent of L (but dependent on ~). 

The following bounds are immediate consequences of (2.6) and 
Lemma 2.1(ii), (iv). For any Iz[ ~<zc, 

IZc[lzc(O)- Z/~z(0) [ ~ Cl~r~ 1 l1 -Z/Zcl  ~ (2.8) 

and 

IV2/Izc(0) - V~/lz(0)l ~< C2L 2 I1 - z/zc[ ~ (2.9) 

where C1 and C2 are independent of L. 

2.1. I d e n t i f i c a t i o n  of  B and 

In this section we identify the constant B and function ~ of (1.10). We 
will use the fact that 

d 
-~z (Zgz) = Z(z) (2.10) 

which can be seen from (2.3) and (1.6). 
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It follows from results of ref. 1 that 4 ( 0 )  is analytic in [zl < zc and 
continuous on Iz[ ~<z~. Because Z(z) diverges at z~, it follows that 
~ ( 0 ) = 0 .  By (2.1), (2.2), (2.10), and (2.7), 

d~z(O) { d } dz ~ z ( z ) + ~  [ZOz(O)] = -~22(z)[1 +~o~'~(0)] -~q'~(o) 

(2.11) 

Therefore 

dE(0) 
-2/?z(0) = 2g2/~z(0)[1 + zQ~:(0) ]  + 292F=(0) ~,(0) (2.12) 

dz 

Integrating (2.12) along a contour joining z to zc and using the fact that 
~c(0) = 0 gives 

4 ( 0 )  2 = 292 ~c {/~z(0)[1 + zg2~z(0)] + F=(0) ~z(0)} dz (2.13) 

By (2.13), 

['z(0) 2 = B2(zc - z) + E(z) 

where B12=2s (b is the constant 
E(z) = El(Z) + E2(z) + E3(z), with 

(2.14) 

of Lemma 2.1(iii)) and 

E,(z)  = 2D f[ ~ [ /~(0) - ,~z~(O)] [ i  + zD ~'~(0)] dz (2.15) 

E2(z) = 2s L z~ [zQ~z(0) - b] dz (2.16) 

and 

E3(z) = 2.(2 L ~ ~ez(0 ) ~P~(0) dz (2.17) 

This gives 

1 1 
4 ( 0 )  - -  B I ( Z  e __ Z)I/2 "t- ~I(Z) (2.18) 

with 

1 - [1 +B~-2(zc-z) i E]1/2 
4(~) = [ ~ ( z  _ z ) +  E]l/2 (2.19) 
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Therefore 

with 

and 
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F~(O) ( z c - z )  1/5 + g ( z )  (2.20) 

I- B~- - L2~(1 + b)J (2.21) 

g ( z )  /~z(0) -- fl~(0) +/~z(0) g~(z) (2.22) 
-- B l ( Z c _  Z)l/2 

2.2. Proof  of  T h e o r e m  1 .1 (a )  Given Lemma 2.1 

As observed at the end of Section 1, to prove Theorem 1.1(a), it 
suffices to show that [ g ' ( z ) l < < . c o n s t . l z c - z l  ~ 3/2 for all Iz[<~zc (the 
constant can depend on L). By (2.22), we have 

e '  ( z ) f~; f~z - fZzc 
- + h z g ~ ( z )  (2.23) 

B l ( Z c _  z)1/2 + 2B-~-~ ~)-)3/2 F f/'zel(Z) " ' 

It is routine to bound each term on the right side, given the following 
lemma. 

Lemma 2.2. For  any d >  8 there is a c > 0 (independent of L) and 
an Lo ~> 0 such that for L ~> Lo 

IP~(0)I ~ c I1 - z / zc l  1/2 (2.24) 

for any z with [z[ ~<zc. 

Proof .  Let w = z / z c ;  we are interested in [w] ~< 1. We prove (2.24) 
separately for w in a neighborhood of 1 and outside of this neighborhood. 

Beginning with w near 1, we first observe that since lim/.~ o~ b = 0, 
f l ~ (O)<~O(L  l - a )  andgzc~> 1, we have 2 B 1/> g2 for L sufficiently large. Hence 
by (2.14) 

IPz(0)21 ~>t2 I z c - z l -  IE(z)l (2.25) 

Lemma2.1 can be used in conjunction with (2.6) to show that for 
< min{1/2, ( d - 8 ) / 4 }  there is a constant K, independent of L, such that 

[E(z)[ ~< f 2 z c K  I1 - z/zc[ 1 + ~ (2.26) 
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Since P~c(0) = 0 and 1/2 ~</~z,(0) ~ 9/2, we have 

1 2 1 2 
- -  ~< ~< s = ~< -- (2.27) 
5:c ) 

Using (2.26) and (2.27) in (2.25) gives 

1 
l_,6z(0)2l >/-; 11 - wl(1 - 10K I1 - wl ~) 

3 

This gives 

]~z(O) ] ~ _~__1 I 1 __ wl 1/2 (2.28) 
4;6 

for z such that Iwf ~< 1 and tl - wl ~< (20K) -1/~. 
Let U denote the closed unit disk in the w-plane, and V= {we U: 

l1 - wl ~< (20K)-1/~}. It remains to obtain the bound (2.24) on the set U\V.  
For this it suffices to show that on the boundary of U\V,  I/v~(0)l >~c' for 
some positive constant c' which does not depend on L. In fact, given such 
a bound it would then follow from the maximum modulus principle 
applied to 1/P~(0) (which would be analytic in w in the interior of U \ V  
and continuous on its boundary) that for we  U\V,  

C t C t 

IL(0)] PC ' =  I 1 -  Wl 1/2 ~ - 11--W] I/2 (2.29) 
I1 - wJ i/2 

A positive L-independent lower bound on/~(0) ,  for w in the intersection 
of the boundaries of U \ V  and V, follows immediately from (2.28). The 
remainder of the proof gives such a bound for the remainder of the 
boundary of U\V,  i.e., for w = e  i~ with 0 e [ 0 0 , 2 n - 0 o ] ,  for some 
positive 00 which is independent of L. 

By (2.1) with z = z c e  i~ 

t4(0)1 ~ 1 - z ~  I g z t - z c ~  Igz(0)l (2.30) 

We define ~: by subtracting the two lowest-order terms in gz: 

~:= g : -  1 - f2z (2.31) 

Then ~: is a power series in z with positive coefficients, and hence 

Fg~l ~< g:c (2.32) 
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for ]zl ~< z~. Direct calculation, for z = z~e ~~ gives 

[g~b2- Ig~l 2 
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= I ~ L  2 -  1~12 + 2(ff~c- Re ~ )  

+ 2f2z~(1 - cos 0) + 2f2zc(~ - cos 0 Re ~ - sin 0 Im ~ )  

(2.33) 

Using (2.32), we conclude that 

I g~cl 2 - Igz l  2 ~ 20zc(1 - cos O) (2.34) 

The above inequality gives an upper bound for Igz], which when 
substituted in (2.30) leads, in conjunction with 1 = ~?zc gzc + OzQCIzc(O) and 
(2.4), to 

I, cos 
for some K' which is independent of L. Using (2.4) and (2.27) gives 

111(  1 cos0)   ] IP~(0)I ,.- 5 40 -- O ( L  l - d )  (2.36) 

The right side is bounded below by a positive constant, independent of 
sufficiently large L, for 0 e [0o, 27t - 0o]. | 

Now, to bound (2.23), we proceed as follows. We first note that by 
(2.10), (2.4), and Lemmas 2.1 and 2.2, 

I/?zl <~O(Izc-zl 1/2) (2.37) 

This gives the desired bound for the first term on the right side of (2.23). 
For the second term, we just use (2.8) to obtain [/~zc-/~zl ~< const. Izc-  zl ~. 
For the last two terms, it suffices to show that [g'11 <~O(Iz~-z[ ~ 3/2). In 
view of (2.19), for this it suffices to show that IE'I ~< O(Izc-zl% This last 
bound follows from (2.15)-(2.17) and Lemma 2.1. 

This completes the proof of Theorem 1.1(a), given Lemma 2.1. 

2.3. Proof  of  T h e o r e m  1 . 1 ( b )  Given Lemma 2.1 

In this section we give the proof of Theorem 1.1(b), given Lemma 2.1. 
Given a function f on Z a, we define its Fourier transform by 

f ( k )  = ~ f ( x ) e  'kx, k e  [ - ~ ,  g]a (2.38) 
x 
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whenever the right side makes sense. Then the radius of gyration (1.3) 
satisfies 

R ] -  V~i,(0) (2.39) 
2t~ 

where Vk denotes the gradient. Given Theorem l.l(a), to prove 
Theorem 1.1(b) it suffices to show that 

V2 i,(0) = const. 2"[1 + O(n-~)] (2.40) 

The left side is the coefficient of z" in V~dz(0), where, by Eq. (3.8) of ref. 1, 

G~(k) = ]~(k) 
I - z It21 b(k) hz(k) 

with 

1 
ZS(k) = ~ E e '~x 

[Ixll~ <~L,x~O 

Making use of symmetry, a straightforward calculation gives 

v~ d:(o) - ~z~(o)= v~z~(o) + v~ ~ ( o )  
L(o) ~ 

(2.41) 

To prove (2.40), by Lemma 1.2 it suffices to show that 

V2dz(0 ) const 
- ~ ~ 2 ( z )  

Zc--Z 

with Ig;(z)] ~<const. ]Zc-Z[  ~ 2 for all [z[ ~<z c. This can be shown using 
(2.41), employing Lemma 2.1 as in Section 2.2. It is at this point that (2.9) 
and Lemma 2.1(v) are used. This completes the proof of Theorem 1.1(b). 

Integrating the bound on ~ gives I~=(z)l ~ < c o n s t . l z c - z l  ~ ', which 
with (1.12) improves (1.9) to 

const 
~2(Z ) (Zc__Z)I/2_~_O(IZc__Zle 1/2) (2.42) 

822/'67/5-6-12 
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3. PROOF OF L E M M A  2.1 

To complete the proof of Theorem 1.1, it remains to prove Lemma 2.1. 
In this section we prove Lemma 2.1, given the bounds in Lemma 3.1 below 
on the quantity ~ ( k )  occurring in the equation 

d 
(zfiz(k)) = [zOz(z) + 13 q',(k) (3.1) 

stated in Lemma 2.1(iii). Lemma 3.1 is proved in Section 4. 
We restrict attention to spread-out trees for d >  8. Nearest-neighbor 

trees in sufficiently high dimensions can be treated similarly. In this and the 
next section, we use Ki ( i=  1, 2,...) to denote positive constants which are 
independent of L but may depend on e or 7 of Lemma 2.1. We always take 
L sufficiently large that the analysis of ref. 1 is valid. 

We begin by stating several estimates. In addition to the bounds stated 
already in (2.4), it is shown in Section 3.2 of ref. 1 that for Izl ~ zc 

IV~/~(k)I ~ K , L  3 d (3.2) 

Also, it follows from (2.4) and Lemma 2.2 that for [z[ ~< zc 

~(0) ~ - 1/2 
Iz(z)l= Fz(O) <~K2 1 -  (3.3) 

Arguing as in (3.10)-(3.12) of ref. 1, and using (2.27), for ze  [(5f2) 1, zc ) 
and L sufficiently large we have 

~z(k ) >~ K3[Z(z ) - 1  q_ k 2 ] / >  K 4 [ (  1 _ Z/Zc)l/2 .q._ k23 (3 .4 )  

and for z e  [0, (5f2) 1] we have 

~ (k ) />  K4(1 - z/zc) u2 >~ K4(1 - 9 / 1 0 )  1/2 (3.5) 

Combining (2.4) and (3.5) then shows that for z e  [0, (5f2) 1], 

Z(z) ~< K7 (3.6) 

The following lemma gives bounds on ~z(k). It will be proved in 
Section 4. For the statement of the lemma we define 

I 
1, d >  10 

t/(x) = (1 + Iln xl)4, d =  10 

( x(lO- a)/2, d <  10 

(3.7) 
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This quantity occurs as an upper bound for a variety of Feynman diagrams 
with massive propagators that we will encounter. The simplest such 
diagram is the pentagon diagram 

f[ . . . .  ]a (k 2 1 ddk rn2) s (2n)#~ < O(rl(m 2)) (3.8) 

(as m 2 --* 0); such estimates will be discussed in more detail in Section 4.3.2. 

Lemma 3.1. Let d > 8 .  For L sufficiently large (3.1) is satisfied, 
with r a power series in z (without constant term) satisfying the 
following bounds for any z with 0 ~< z ~< z~ : 

lim r = 0 (3.9) 
L - +  or 

d r ~<K z(z) t/()~(z)) (3.10) 
Zc 

IIv~ ~(o)11 < KL2q(g(z)) (3.11) 

In the remainder of this section we give the proof of Lemma 2.1, 
assuming Lemma 3.1. In preparation for the proof we recall the following 

- -  o o  identity from Lemma 3.1 of ref. 3. Let f ( z ) -Zn=o  cn zn be a power series 
with radius of convergence R > 0. Then for any z with Izl < R and for any 
ee(0, 1), 

2 116J(z)ll = cl_~lzl  II f ' [ z  exp(--21/(1-'))]]] exp(--))/( ' -~))  d2 

where C1 ~ = [ ( 1 - e )  F ( 1 - 5 ) ]  1. 

(3.12) 

Proof of Lemma 2. l ( i ) .  We use (2.4), (2.27), and (3.9) in (2.12), to 
conclude that 

2-Fz(0) ~ ~<KQ (3.13) 

Integrating the above along the line segment connecting z to zc, using 
Fzc(0) = 0, gives 

IPz(0)12 ~< K~ I z - zc l  <~K' I1-z/zcl (3.14) 

where we used (2.27) in the last step. 
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ProofofLemma2.1( i i ) .  By (3.12), 

][(~:[zhz(O)'][Zc[[ = C  1 yz c fo~ d~exp( -J~  1/(1 ~)) ~-~z(zhz(O))l .... p()I/(I-D) 

(3.15) 

By (2.10) and (3.1), the derivative in the integrand satisfies 

d (z~(O)) dz <.):(Izl)+[Izl~z(Izl)+a] II ~z(O)ll (3.16) 

By (3.3) and (3.9), for ze  (0, zc) the right side can be bounded absolutely 
to give 

z ~ - 1/2 

Substituting the above bound into (3.15), and using (2.27) to bound zc, 
(3.15) is bounded absolutely by 

2 K9f2 a d 2 e x p ( - 2 1 / ( 1 - ~ ) ) { [ 1 - e x p ( - 2 1 / ~  7))] 1/2+1} (3.18) 

The desired result now follows from the fact that the above integral is finite 
for 7 < 1/2. 

.Proof of Lemma 2. l ( i i i ) .  

b = zc~q'z~(0), 

We take 

fl(z) = z~ r z J2  r 

It then follows immediately from (3.9) that l imr~ ~ b = 0. 
To prove the bound on fl(z), by (2.6) it suffices to prove that 

116;[z~r tzoll < KlO 

For this we use (3.12) and the abbreviation 

(3.19) 

(3.20) 

z~. = Zc exp( - 21/(1 - -  e ) )  (3.21) 
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to write 
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d 

d2 exp(-21/O ~)) ~zz (zf2fUz(O))l'-x 

(3.22) 

Using (3.10) to estimate the z derivative of ~ ( 0 )  and then applying (3.3) 
gives 

1[ 0~_.[zs ~z(0)] 1~[I ~< K f o  d2 exp(-21/(1 -~))[1 + Z(z~) t/(Z(z~.))] 

~<K' d 2 e x p ( - 2  ~/(~ ~))[1+2 ~/2(t-%/(2 1/2o-~))] 

(3.23) 

The right side of (3.23) is finite for e<  1/2 if d >  10, or for e< ( d -  8)/4 if 
8 <d~< 10. In view of (3.9), this completes the proof. 

Proo f  o f  L e m m a  2. I (iv). Using (3.12), we have 

2 " d2 exp( -21/(1 -~)) V~/I~(O) [.~ H(~z VkHzc(  O )H -- c 1 _eZc (3.24) 

By (3.1), the derivative in the integrand is given by 

Vk2 dzzd H~(0)* = z 1 i-2~(z) zs r + V~ ~z(0)-V~/lz(0)]  (3.25) 

Since Z(z)>/1, this gives 

2 IlOzV~Hzc(0)[I ~ C 1 _eZc d)~ exp( _),/(1-~)) Z(z~.) z ~ l [ z ~ f 2  IIV~ ~(0) l l  

+ IIV~ ~z~(0)lr + IIV~Oz~(0)ll ] (3.26) 

To estimate the integral on the right side, we consider separately the 
intervals [0, 20] and [2o, oo), where 2o is defined by z~0= (5s -1 

On the interval [20, oo), z~ ~< (5(2) -1, and hence by Lemma 3.1 and 
(3.6) the contribution to the integral from this range of 2 is bounded by L 2 
times a constant independent of 2. [The product of za I with the quantity 
in brackets in (3.26) can be bounded above by its value at z~.0= (5s -1 
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using Lemma3.1; /l~(k) also has no z ~ term.] The contribution to the 
integral due to 2 ~< 2o is bounded above, using (3.2), (3.3), and (3.11), by 

KaaL d2 exp(-21/(~ ~)) 2-~/2(1-~)[r/(2 - l /m- ' ) )  + 1] (3.27) 

This integral is finite for e < min{ 1/2, (d-8) /4},  as in (3.23). 

Proof of  Lemma 2. l (v). Arguing as in the proof of Lemma 2.1(iv), 
(d/dz)V~flz(O) is bounded for large L by a multiple of L d+2 uniformly in 
Izl ~<(5f2) -1. Thus, it suffices to consider Izle [(5f2)-l, zc). By (3.25), 
(3.3), and (3.11), for this range of z we have 

d v z / I z ( 0 )  <~K12L 2+a 1 - Q - 1 / 2 [ t / (  1 - ~  1/2)+1] (3.28) 

The desired bound then follows from the definition of t/. 

4. PROOF OF L E M M A  3.1 

In this section we prove Lemma 3.1, thus completing the proof of 
Theorem 1.1. We begin in Section 4.1 by obtaining an explicit expression 
for ~z(k), then obtain bounds on this expression in terms of Feynman 
diagrams in Section 4.2, and finally in Section 4.3 obtain bounds on the 
Feynman diagrams. New technical difficulties, not previously encountered 
in lace expansion analyses, arise both in the derivation of the expression for 
~z(k) and in the Feynman diagram bounds. 

4.1. An Expression for  ~z(k) 
In this section we obtain an explicit expression for the quantity ~z(k) 

in the equation 

d 
-~z (zlTfik)) = [zf2z(z ) + 1 ] ~z(k) (4.1) 

The basic idea is roughly as follows. Consider the N-loop contribution to 
/]rz(k ). Multiplying by z gives an overall factor of z raised to a power equal 
to the number of sites, which when differentiated gives a factor equal to the 
number of sites. This factor can be replaced by a sum over sites y. 
Diagrammatically this corresponds to introducing a new line emanating 
from the N-loop diagram and terminating at y, which is interacting with 
the rest of the diagram. If we were to ignore this interaction, as would be 
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appropriate for an upper bound, we would obtain an overall factor of Z(z) 
multiplied by a sum of N-loop diagrams having an extra vertex. These last 
diagrams will be finite in more than eight dimensions, and are closely 
related to ~b. However, here we are interested in obtaining an identity, not 
just an upper bound, and so, to extract the factor of Z(z), we perform an 
expansion to remove the interaction between the new line terminating at y 
and the rest of the diagram. This introduces higher-order diagrams, which 
must eventually be bounded. 

We follow the notation of ref. 1 without further mention. We also 
introduce the following definitions. Given a < b, and a function 5F~t defined 
on pairs s, t with a ~< s < t ~< b, we write 

K[a, b; ,~ ]  = l - ]  ( I  + ,~st) (4.2) 
a < ~ s < t < ~ b  

and 

J[a,b;YC]= ~ [ I  Y'~, [ I  (I+SF~,,,) (4.3) 
L ~ P [ a , b ]  s t e L  s ' t '  e ~ ( L )  

We adopt the usual convention that an epty product is equal to unity, 
so that in particular K [ b +  1, b ; ~ ] = K [ b , b ; Y ' ]  = 1. We also define 
J[a, a; Y(] = 1. 

We begin from the definition of Hz(0, x) in Eq. (2.10) of ref. 1: 

(1~ot ) 
Hz(0, x ) =  ~ zJ~l iU ~ ~ z IR'l Y[0, l~ol;~] (4.4) 

~ :  0 ~ x \ R i ~ u , ( i )  
ro)l >1 1 

where the sum is over ordinary (not necessarily self-avoiding) spread-out 
walks ~o. Differentiating gives 

loci( ) 
2 z' '2 Fl E z'R" 

dz y ~ : O ~ x  j = o  i : i # j  Ri ~ co(i) 

Rj ~ co(j) ,  y 

To simplify the notation, we will write 

(4.5) 

2i= ~ z IR'l (4.6) 
Ri  ~ ~o(i) 

with the understanding that the summation on the right side is not yet 
closed and may also act on other factors [such as J[0, [col; ~#] in (4.5)]. 
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Given a rib Rj containing y and co(j), we denote its backbone from co(j) 
to y by co', and consider Rj to be composed of co' and ribs attached to co'. 
We denote the rib containing co'(k) by R;, so that Rj is the disjoint union, 

t as sets of bonds, of co', R;, R] ..... RI~, I. We use 7; to denote the analogue 
of (4.6) with R~ replaced by R~ and co(i) by co'U). We introduce an 
interaction 

! if R; c~ R; = ~ (4.7) 
~/;t = 1 if R; ~ R; ~ ~Z~ 

between the prime ribs, so that 

( ico'l ) 
ZERJI= ~ z I~ \k~I=oT~ K[O, Ico'l;~'] 

Rj  ~ co(j) ,  y co': co(j)  ~ y 

(4.8) 

where the sum is over ordinary walks. 
Using the convention that ts represents the edge st if t > s, for fixed 

j e  {0, 1 ..... Icol } we have 

J[O, I c o l ; ~ ] =  Z ~ ( L , j ) (  H ~sj I] (1 +q/,j)) (4.9) 
: " t: t jc -C~(L)  L e &-~ I~ol]  s s j E L  

where 

q / (L, j )=  I~ ~//s, I~ (l+~//s'c) (4.10) 
s t e L  s ' t '  eC~(L )  
s,  t g : j  s ' , t '  ~ j  

represents the interaction among ribs other than Rj. The interaction 
between the prime and original ribs is given, for k C j, by 

! if R k n R ~ = ~  (4.11) 
V~l= 1 if R k n R ~ r  

Let 

1 + ~U~ = l-I (1 + ~',,) (4.12) 
s: sj ~ C~(L) 

and 

~'1 +q/~l, 
1 + 5fkl = I(1 + q/~,)(1 + ~;) ,  

O < k < l  
O = k < l  (4.13) 

For 0 < k < l, Y'kt involves only interactions between the prime ribs, while 
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interactions between prime and original ribs are encoded in ~r0t. Then we 
have 

K[O, tco'l; ~ ' l  
t: t jc  ~ ( L )  0 <~ k < l<~ Ico'l 

= (1 + ~ )  g [0 ,  tco'l; X]  

and (4.5) can be written 

d (Znz(O, x)) = ~ Z z~~ Z ',', Z ~(L, j) 
d Z  y co :0~x  j = O  i: j LeL-e[0,1col] 

Icol ~> I 

( Io9'1 ) 

• ~ zt~'l \k~I__o?~, (1 +~UI))K[0, tco'l;~ "] 
co': c o ( j )  ~ y 

(4.14) 

I-I�84 
s : ,~j ~ L 

(4.15) 

We wish now to perform the lace expansion, by expanding and 
resumming the interaction factor K[0, Ico'l;SF]. First we extract the 
contribution due to the simplest case, when Ico'l = 0. In this case we have 
the constraint y = co(j), which corresponds in (4.15) to a sum over all sites 
on the original backbone co. This gives a contribution to (4.15) equal to 

where 

~u2(O, x ) = ~  T2(O, x, y) (4.16) 
Y 

T2(0, x , y ) =  ~ I[yeco]zl~ J[O,]col] (4.17) 
co :0~x  i = 0  
Io91 >~ 1 

For Ico'l/> 1 we distinguish between the case where j  is an endpoint of 
an edge in the lace L and the case where it is not. In the latter case the 
empty product I~:sj~L ~sj = 1 can be ignored, and we will insert Eq. (2.6) 
of ref. 1, i.e., 

Ico'l 

gl-0, Ico' l ;~] = g E l ,  Ico' l ;~] + ~ J[O,a;Yf]K[a+l, Ico't;5f] 
a = l  

(4.18) 

into (4.15). By definition of W, it follows from (4.18) that 

Ico'l 
K[O, I c o ' l ; ~ ] = K [ 1 ,  [co'l;0e'] + ~ J[O,a;X]K[a+l, tco'[;Y/'] 

a = l  
(4.!9) 
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Next we consider the case where L contains an edge with endpoint j. 
For brevity we write in this case j e L. By definition of a lace there can be 
at most two edges in any lace L containing a particular site, so in this case 
there will be either one or two edges in L containing j. Given an edge sj ~ L 
and a configuration for which ~'sj = - 1 ,  let k(s, j) be the smallest k such 
that RsC~R'gvaf2d, and set k(L,j)=maxs:sj~Lk(s,j). Then in (4.15) we 
write 

Ico'l Iro'l 

H % =  +- ~ I[k(L,j)=l] = ~ ~ (4.20) 
s : s j ~ L  l = 0  l = 0  

where the last equivalence defines ~#/;. In the above, the sign + is taken to 
be + 1 if there are two edges sj ~ L, and to be - 1  when there is only one 
sj~ L; this sign will be irrelevant for our absolute bounds. Now we wish 
to perform the lace expansion, this time taking into account the extra 
constraint due to ~ on the sums over co' and R2. We reorganize the inter- 
actions before performing the lace expansion, as follows. Fix 0 ~< l < I co't, 
and let 

1 + ~ t t )  = (4 .21 )  

(Ho (1+ , = , < t  

Then for 0 ~ l ~< I co'l, 

g[0 ,  Ico'l; ~r] = K[0, l; ~ ]  K[I, Ico'l; ~(t)] (4.22) 

(recall that K[b, b; ~(o]  = 1). By Eq. (2.6) of ref. 1, for 0~<l~< Ico'l, 

Ico'l 

K[l, I c o ' l ; Y / ( ~  Ico'l;~#']+ ~ J[l,a;~l(~ [co'l;~ 
a = / + l  

(4.23) 

where for l = [co'[ the empty sum over a is taken to be zero. 
To abbreviate the notation, we write the bulk of the right side of 

(4.15) as 

Y 

) 
y co: 0 ~ x j = O  i: j L ~ ~ [ O ,  Icol] 

leo I/> 1 

/ I~o'l \ 

co': o ( j )  --~ y 
Ico'l ~> 1 

(4.24) 
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with the understanding that the summations on the right side are not yet 
closed. Extracting the ]e)'[ = 0 term from the right side of (4.15) and using 
(4.19), (4.22), and (4.23) gives 

d 
dz (zHz(O, x)) 

= gt2(0, x) + f f  {I[jCL] (K[1, Ico']; 8/'] 

i~o'1 ) 
+ ~ J[O,a; f ]K[a+l ,  I~o'1;~'] 

a = l  

IoYl 
+I[ j~L]  ~ r162 I; 5~] 

l = 0  

Ico'l 
x K [ / + l ,  lo ) ' [ ;~" ]+  ~, 

a = l + l  

JU, a; ~r ~'~] XFa+l, Io)'1; ~"] )}  

(4.25) 

Let D equal s times the indicator function for the set of sites x # 0 such 
that ]]x]] o0 ~< L. Then resummation as in the derivation of Eq. (2.11) of ref. 1 
gives 

~(IEjr  L] KE1, la/I; G#,] + I[ je  L] r I~o'1; ~" ] )  

= ~ ~ gt2(0, x, u)(zf2D * Gz)(y - u) 
y u 

= 7~2(0, x) z~2x(z) 

This gives 

(4.26) 

d 
dz (zHz(O' x ) ) =  ~2(0, x)[1 + zY2z(z) ] 

ioJ'l 
+ ~  I[ j~L] ~ J[O,a;~g]K[a+l, Im'J ;~ ' ]  

a = l  

Ico'l 

+ I [ j e  L]  \l~1 ~/;~K[0, l; ~r] K[l+ 1, leo'l; ~//'] 

IoYl - 1 

+ F. ~ x [ o ,  t; x ]  
l = 0  

~ )} x ~ J[l,a;~/(~ I~o'1;~"] 
a = l + l  

(4.27) 
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and 

Now we define 

~1(0, X, y)=~y {I[ jCL] J [0 ,  I~'1; ~ ]  

I~'1 } 
+I[ j6L ]  ~ ~WtK[O,l;Ys 1o9'1;~ (')] (4.28) 

l=O 

~1(0, X) = 2 ~'/1(0' X, y)  (4.29) 
Y 

The quantity 7t1(0, x) incorporates from (4.27) the a =  [~o'1 term of the 
first summation, the l =  Io9'1 term of the second summation, and the 
a = Io9'1 term of the fourth summation. The rest of the term involving J~ in 
(4.27) can be resummed to give 

~ ~,(0, x, u)(zf2D �9 Gz)(y - u) = ~1(0, x) zf2z(z ) (4.30) 
y tt 

Writing 

we finally have 

~u(0, x) = ~1(0, x) + ~u2(0, x) (4.31) 

d 
~z (zHz(O, x ) ) =  ~u(0, x)[1 + zf2z(z ) ] (4.32) 

Taking the Fourier transform then gives 

d 
(z/TUk)) = [~ + znz(z)] q'z(~) (4.33) 

By definition, ~P(k) is a power series in z without constant term. 

4.2. Bounds in Terms of Feynman Diagrams 

In the previous section we obtained an explicit expression for ~(k) in 
which it was written as a sum of two terms ~l(k) and ~2(k). In this sec- 
tion we obtain upper bounds on these two quantities and their derivatives 
in terms of Feynman diagrams. Then in the next section we show how 
these diagrams can be bounded to give the results stated in Lemma 3.1. As 
in the bounds of ref. 1, ~(k) will be bounded in terms of sums of Feynman 
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diagrams of an increasing number of loops, and these sums will be 
bounded above by (essentially) geometric series whose ratio is the square 
diagram. However, here a number of new diagrams will be encountered, 
not occurring in ref. 1, and these will require individual attention. 

We begin with ~P2(k), which is the simpler of the two. 

4.2.1. B o u n d s  o n  qJz(k). From (4.17) it is apparent that the 
diagrams contributing to T2(k) are given by the diagrams obtained 
by adding a vertex to each line along the backbone of the diagrams 
contributing to /)(k). The latter are illustrated in Fig. 3 of ref. 1. By 
neglecting interactions between distinct lines, these diagrams with 
additional vertex can be bounded as products of the square diagram and 
the diagram 

(4.34) 

(heavy dots on diagram lines represent vertices). For example, the diagram 

I I , + ' l  I (4.35) 
w 

can be bounded above by 

~ - ]  ( s # p ~  ~ - ~ ; + y )  ~ - - - ] ~ < [ - - - ] x ~ - - - ] x [ ~  (4.36) 

To prove the first statement of Lemma 3.1 for ~b2(k ), it thus suffices to 
show that at z = z c the diagram (4.34) goes to zero as L --* oo. 

The z derivative of zO:(k) can be bounded diagrammatically as 
explained at the beginning of the previous section. That is, z(d/dz) T2(k) 
can be represented by the small quantity -T2(k) ,  plus terms given by the 
diagrams of O2(k) with an extra vertex and a line emanating from this 
vertex which is interacting with the rest of the diagram. We ignore this 
interaction and take absolute values in each diagram, to get an upper 
bound for z positive of the form 

dzz 1 I d r < l_r  - IIT:(k)ll (4.37) 
z z 

Here, ~z is given by the sum of diagrams which are obtained from the 
diagrams of ~2 by adding an extra vertex, or in other words by the sum 
of the diagrams obtained by adding two additional vertices to the diagrams 
of/I(k).  Note that by construction ~b z is a power series in z with positive 
coefficients, without constant term. 
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Given such a diagram, an upper bound is obtained by neglecting inter- 
actions between distinct lines. For 0~<z~< (50) 1, an upper bound on 
z - l ~ z  is given by its value at z = (50) -1, since it is a power series in z with 
positive coefficients. The diagrams in ~z are then bounded by constants 
uniformly in L, since by (3.6) the susceptibility is bounded by a constant. 
This gives a bound on (4.37), of order z71, for 0~<z4(5s -1. Now 
for (5s we again bound the factor z 1 from above by 
50 = 0(z71). The diagrams in ~z can be bounded by following the proce- 
dure used in the previous paragraph, with the difference that now we may 
pull off a pentagon diagram rather than a square diagram. The bounds will 
then be in terms of the square diagram and the additional diagrams 

[ - ~  ~ (4.38) 

It suffices to show that these additional diagrams are bounded above by a 
multiple of t/(Z(z)). 

Finally, for the bound on ~2x Ixl 2 ~e2(0, x) we distribute the Ixl 2 using 
the triangle inequality to obtain diagrams in which a single line is weighted 
by Ixl 2. Then we use the fact that the Fourier transform of Ixl 2 Gz(0, x) is 
bounded above by 

IV~Gz(k)l ~< K[Gz(k) + L2Gz(k) 2] (4.39) 

which follows from Eq. (3.22) of ref. 1 and accompanying bounds. 
This implies that V 2 ~2(k) can be bounded above by diagrams already 
encountered in this section. 

To summarize, to prove the bounds of Lemma 3.1 for ~2(k), it suffices 
to show that the diagram (4.34) is finite and goes to zero as L ~ ~ and 
that the diagrams (4.38) are bounded above by a multiple of r/(X ). 

4.2.2. Bounds  on ~J l (k) .  The quantity ~ftl(k ) is given by (4.28) 
and (4.24). In this section upper bounds will be obtained in terms of con- 
vergent diagrams which go to zero as L --* oo. Just as for ~2(k), to obtain 
the bounds of Lemma 3.1 on derivatives of ~ftl(k ) it suffices to show that 
adding a vertex to these convergent diagrams gives rise to a result which 
is bounded above by a multiple of ~/(Z). The identification of the diagrams 
which arise is tedious but straightforward, and much of the detailed 
diagrammatic analysis will be omitted. 

We deal separately with the contribution to (4.28) due to terms with 
j $ L  and j~L,  beginning with the former. 

Case 1: j$L. Suppose j~L. Consider the factor J[0, Ico'l;~] in 
(4.28) to be a sum over laces L'. For a nonzero contribution to ~1 in this 
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case there are rib intersections imposed by both of the laces L and L'. 
Roughly speaking, these intersections give rise to a ladder diagram as for 
n with an additional ladder diagram growing from it. The coupling 
between these two ladder diagrams is mediated by the first edge 0l (say) of 
the lace L', which gives rise to a factor ~rot. According to (4.13), this factor 
will be nonzero only when either R; c~ R; ~ ~ or R~ c~ R; r ~ for some s 
with sj ~ ~g(L). 

We begin by looking in detail at the simplest case, in which both laces 
consist of a single bond. The contribution to ~ ( 0 ,  x) due to this case is 

2 ZIco[ 2 ~i d~O Ir 1~  ( 1 "-}- ~ s t )  
y j = O  i: j O~<s< t~< Icol 

s , t  ~- j ; s t  ~ O  [co[ 

y 
o): O ~ x  
Icol/> 1 

x ~ z I~ 72 (1 + V ; )  2Fo tco,t 
~': oJ(j) ~ y k = 0 

Io~'l/> i 

I-I (1 + 3(s,,, ) (4.40) 
0 ~< s' <: t' ~< Icol 

s ' t '  ~ O  I~o'1 

The factor ~o. io~'t is nonzero only if RI,~, j intersects either some Rs 
(0~<s~< I~ol, sCj; in which case ~ico,i = -1) ,  or else R; (in which case 
q/; to,'t = -1) .  Also, the factor q/0 I~t requires an intersection of the ribs R o 
and .Ricol. This leads to the diagrams 

@ @ (4.41) 

which can be bounded easily using the square diagram. 
Consider now the case where the laces L and L' may consist of more 

than one edge. By definition of X, edges in L' other than the first force 
intersections between prime ribs and do not involve unprimed ribs. For this 
reason, in diagrammatic estimates we can bound the portion of the 
diagram resulting from the intersections imposed by edges in L' other than 
the first, in terms of the square diagram in the usual manner. Similarly, 
since the first edge in L' can impose only intersections between prime ribs 
and unprimed ribs compatible with Rj (or between a prime rib and R;), we 
can bound loops due to L which do not overlap with these compatible ribs 
also in the usual way. Some examples of situations that can occur, together 
with the diagrams arising, are illustrated in Fig. 1. Additional diagrams can 
arise, and are depicted in Fig. 4. These possibilities have been arrived at by 
a tedious case-by-case analysis which we omit. 

Thus, for this case it suffices to show that the diagrams of Fig. 4 
converge and go to zero as L ~ o% and that the diagrams obtained by 
adding an additional vertex to these diagrams are bounded above by a 
multiple of r/(X). 
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Fig. 1. 

@ 

j , j 
t 

o @ |  
Four representative partial laces L with j ~ L, and the intersections imposed by ~0z, 

together with the diagrams to which they give rise. 

Case 2: j e  L. In this case, in (4.28) the value o f j  for which the rib 
Rj contains y is an endpoint of one or two edges of the lace L. We proceed 
as in the previous case, this time taking into account the additional con- 
straint ~ [defined in (4.20)]. Again in bounding diagrams we need only 
consider the first edge in the lace L' arising from J[l, tee'l; ~(/)]. This is 
because for t > s > I the interaction ~j~t) involves only the prime ribs, and 
the factor ~ does not place any constraint on prime ribs R;  with k > I. We 
consider separately the cases in which j is an endpoint of one or two edges 
in L. 

Consider first the case where j is an endpoint of a single edge sj of L. 
In this case the factor ~ in (4.28) enforces an intersection between Rs and 
R;. Suppose that the first edge of L' is lk. The factor ~u(t) in J[l, [e)'[' ~j(o] lk 

is nonzero if and only if Y'~k r 0 for some s = 0,..., I. This occurs if either R~ 
intersects R'~ for some s = 0 ..... l or if R;~ intersects R a for some a such that 
ajeCg(L). Taking this into account, we are led as in case 1 to a number of 

Q 

Fig. 2. Two representative laces L with j the endpoint of a single edge in L, together with 
the intersection imposed by the first edge of L', and the corresponding diagrams. 
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Fig. 3. 

| 

Two laces L with j the endpoint of two edges in L, together with the intersection 
imposed by the first edge of L', and the corresponding diagrams. 

new diagrams, some of which are indicated in Fig. 2. Other possibilities 
arise, but no new diagrams are required beyond those illustrated in Fig. 4. 
We omit the tedious details of the case-by-case analysis showing that no 
other diagrams are encountered. 

For  the case where j is an endpoint of a single edge of L it suffices to 
show that the diagrams of Fig. 4 converge and go to zero as L ~ 0% and 
that the diagrams obtained by adding an additional vertex to these 
diagrams are bounded above by a multiple of q(Z). 

The situation for the case where j is an endpoint of two edges sj and 
j t  of L is similar. Bounds are required on the diagrams of Fig. 4 as outlined 
in the previous paragraph. Some examples of how the diagrams arise are 
shown in Fig. 3. 

The situation is summarized in Fig. 4. In the next section estimates on 
the diagrams of Fig. 4 will be obtained. 

4.3. Bounds on Feynman Diagrams 

In this section we complete the proof of Lemma 3.1 by showing that 
for d >  8 and L sufficiently large the 11 diagrams of Fig. 4 are finite at 
z = zc and go to zero as L ~ o% and that the diagrams obtained from these 
11 by adding one vertex are bounded above by a multiple of ~/(X). We 

| 1 7 4  
Fig. 4. To complete the proof of Lemma 3.1, it suffices to show that the t l  diagrams 
depicted converge and go to zero as L ~ m, and that the diagrams obtained by adding a 
vertex to these diagrams are bounded above by a multiple of r/(Z). 

822/67/5-6-13 
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begin by considering the 11 basic diagrams and then move on to the 
diagrams obtained from these by adding a vertex. Apart from the square 
diagram, the diagrams of Fig. 4 are basic in the sense that they do not 
decompose into products of simpler diagrams which are convergent above 
eight dimensions. 

4.3.1. The Eleven Basic Diagrams. For the 11 diagrams 
depicted in Fig. 4 we set z = z c and use the infrared bound (3.4) to bound 
the propagator above by a multiple of k -2. The superficial infrared degree 
of divergence (d times the number of loops minus twice the number of 
lines) of an /-loop diagram is equal to / ( d - 8 ) ,  so the diagrams will 
converge unless there is a divergent subdiagram. A theorem of Riesz 
(Theorem 1 of ref. 8) states that the conventional power counting condition 
for subgraphs suffices to prove convergence. Thus, we need only check that 
the infrared degree of divergence of each subgraph is positive. The infrared 
degree of divergence of a subgraph is defined in ref. 8 essentially as d times 
the number of loops minus twice the number of "relevant" internal lines of 
the subgraph. Roughly speaking, a line is relevant for a subgraph if it is not 
shared by a loop not in the subgraph--we refer the reader to ref. 8 for the 
precise definition. It is a tedious but routine exercise to check that the 
required condition is satisfied for each of the 11 basic diagrams, and hence 
they are all finite. 

To see that the 11 basic diagrams go to zero as L ~ o% we first note 
that by ref. 1, (3.14), and ref. 9, (5.30), for k r  

lim G:(k)= gz (4.42) 
L ~ o o  

Since the diagrams are bounded above by their values at zc, it suffices to 
consider z--zc .  By (4.42) and the dominated convergence theorem, the ten 
diagrams without the constraint that loops not shrink to a point converge 
to g~c, where I is the number of lines in the diagram. Since this is the 
contribution to the diagram when all vertices coincide, the diagram with 
loops constrained to be nontrivial must converge to zero as L--,  oo. 

4.3.2. The Eleven Diagrams w i th  Added Ver tex .  The 11 
diagrams with added vertex cannot be expected to be finite at the critical 
point for all d >  8, as the superficial infrared degree of divergence 
l(d-8)- 2 is negative for d near 8. However, for d >  10 this is positive and 
it can be seen as above that for d >  10 the infrared degree of divergence of 
each subdiagram is positive, and hence by Theorem 1 of ref. 8 the diagrams 
are all finite. 

For  d~< 10 the manner of divergence of the pentagon diagram can be 
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estimated as follows. By (3.4), for z less than but near Zc the pentagon 
diagram is bounded above by a multiple of 

c 1 (4.43) 
J E ~,~Y [Z(z) -1 + k2] 5 (2re) a 

By making the change of variables k ' =  kz(z) ~/2, it is easily seen that this 
integral is order 

1 (d> 10) 

1 + In Z (d = 10) 

Z (lO-d)/2 (d< 10) 

and hence [comparing (3.7)] is order q(Z). 
To see that the remaining ten diagrams are also order t/() 0, we will 

appeal to Theorem 2 of ref. 8. In preparation for this, we again scale all 
momenta in the integral representing a diagram as was done for the 
pentagon. This results in an overall factor of Z(Z) -l(d-8)/2+1 multiplied by 
the same diagram with propagators [(k')2+ 1 ]-1  and integrations ranging 
over I -feZ m, ~Z1/2] d. We denote this latter diagram by ~,~g(l, d,z). A 
diagram ~4~(l, d, Z) is infrared convergent, but may be ultraviolet divergent 
as )~ ~ oe. The subdiagrams giving the maximum ultraviolet degree of 
divergence (dl minus twice the number of lines of the subdiagram) are 
the full diagrams with ultraviolet degree l ( d - 8 ) - 2 .  Hence, by Theorem 2 
of ref. 8, we have upper bounds given by multiples of 

~ ( l ,  d, Z)~< {Zt(a_ 8)/2- 1(1 
d < 8 + 2/I 

(4.44) 
+ logz )  l, d>>.8+2/l 

Multiplying by the overall factor Z(Z) -l(d-8)/2+~ then gives an upper 
bound for the original diagram of the form 

~l(8-d)/2+1 (d<8+2/l )  
(4.45) 

(1 + log Z) ~ (d~> 8 + 2/l) 

If d =  10, then d>~8+2/l. Thus, we have a bound (1 +log Z) 4 for all 
diagrams. If d = 9, then d < 8 + 2/l only for the one-loop diagram, which is 
then bounded above by order X 1/2. Higher-loop diagrams are bounded by 
powers of logarithms of Z and hence are also bounded by order Z 1/2. This 
completes the proof. 
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